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The non-linear dynamic behavior of acoustic wave propagation in an
underwater sound channel, described by the Munk’s classical sound speed profile
perturbed by a single-mode internal wave, is studied using a parabolic ray theory.
The amplitude and wavelength of this single-mode wave are used as the branching
parameters in bifurcation analysis. The phase plane trajectory of the ray-based
system can be periodic, quasi-periodic, and unstable. The regions of instability,
located numerically via the bifurcation diagrams, are examined through a
sequence of phase diagrams and Poincaré maps. Charts showing the maximum
uninterrupted propagation distance reveal instances of anomalous vertical
scattering of sound energy. Floquet multipliers were used to investigate instability
of periodic orbits.
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1. INTRODUCTION

Interest has grown in recent years in the use of sound propagation as a
tomographic means to study the ocean [1, 2]. The idea is quite simple: a sound
source within the ocean generates pulses, and several receivers, horizontally and
vertically displaced from the source, receive them. From the time delay of the
received signals and a knowledge of ray paths, one inverts for the ocean’s sound
speed (or temperature) structure between the source and receivers. So far, arrival
time has been the primary signal characteristic from which inversions have been
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performed to reconstruct ocean structure. For long-range propagation (exceeding
several hundred kilometers) it has been suggested [3] that ocean fluctuations
(such as internal waves) destroy the utility of using arrival time as a characteristic
upon which to build inversion schemes, and perhaps other signal properties
(e.g., modal delays) may be more serving. Recent theoretical and experimental
studies by Simmen et al. [4] have suggested that the breakdown in identifying
isolated and resolved signal arrivals at long ranges is due to ray chaos induced
by a range-dependent ocean structure. They also pointed out that this ray chaos
can lead to a substantial increase in (micro) multipaths, which in turn, limits
the spatial resolution of any tomographic inversion scheme based on the
time-of-flight.

With the geometrical approximation (i.e., in the high frequency limit) the linear
wave equation reduces to an eikonal and a transport equation. These equations
are a system of non-linear ordinary differential equations, describing the behavior
of signal arrival time and amplitude along ray trajectories. One coupled pair of
these equations describes the ray trajectories, which forms a Hamiltonian system.
This theoretical approach has been studied extensively for almost two decades by
Zaslavsky’s group, it is summarized in the recent review paper [5]. When the ocean
medium through which the acoustic signal propagates contains a range-dependent
structure, such as that due to internal waves and mesoscale fluctuations, then this
Hamiltonian system is non-integrable and can exhibit notable sensitivity to initial
conditions or environmental perturbations [6].

The present paper probes into the non-linear dynamic behavior of basic ray
equations in the presence of a wave-like forcing assuming that a single-mode sound
speed perturbation is superimposed onto a generic range-independent sound speed
profile known as the Munk’s canonical profile [7]. The goal is to investigate
acoustic wave propagation using the ray equations for a simple ocean model, with
the intent of later extending the methodology and understanding developed in this
initial study to a more realistic ocean scenario. The analysis will be carried out
using a non-linear dynamics approach (e.g., [8, 9]), in particular, stability analysis
will be conducted by constructing bifurcation diagrams, Poincaré maps, and
calculating Floquet multipliers. The internal wave parameters, namely the
amplitude and wavelength, will be used as the branching parameters.

2. PARABOLIC RAY EQUATIONS

There is a number of computational means for the investigation of underwater
sound wave propagation such as normal modes technique, spectral analysis, finite
difference and finite elements methods and ray methods, to name a few [10], but
the ray-based methods provide the best geometric insight into the nature of the
long-distance wave propagation. Moreover, an outstanding agreement with the
experimental results has been reported recently [4]. This will be discussed briefly
later to support the choice of the ray method.

As prompted earlier, pulse travel time has been used as the principal signal
characteristic to reconstruct ocean sound-speed tomography. However, for
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propagations over long distances, it has been observed [11] that pulse timefront
arrivals sometimes become so smeared that they cannot be used for the travel-time
measurements. It is thought this is due to the internal waves acting on the
sound-speed profile. A comparison of the actual and the simulated time front [4]
is given in Figure 1. Figure 1(a) shows the reconstructed arrivals from the
experimental result for a single pulse, while Figure 1(b) depicts the superposition
of the simulated ray arrivals for three separate realizations of the internal-wave
field. The distinguished, early-arriving timefront segments, the smearing of
timefront in the rear of the pulse, and the envelope of the arriving rays compare
well between the simulation and the actual case.

Figure 1. (a) Actual and (b) simulated timefront.
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Figure 2. Definition sketch of acoustic ray.

As a result, the ray approach was chosen for the studies, where the eikonal
equations can be elegantly expressed by the following pair of equations

dz
dr

=
1H
1p

,
dp
dr

=−
1H
1z

, (1, 2)

where H is a Hamiltonian of the following form

H(z, p)= 1
2 p2 +V(z). (3)

Here, z is the ray depth, r is the horizontal range, and p=tan f is the tangent
of the ray angle f with respect to the horizontal axis, which is schematically
depicted in Figure 2. The potential energy function V(z) depends on the average
sound speed profile c(z) in the ocean

V(z)=
1
2 $1−0 c0

c(z)1
2

% , (4)

where c0 is a reference sound speed. The average sound speed profile c(z) is
calculated after Munk [7]

c(z)= ca$1+ o 0e−2(z− za )/B +2
z− za

B
−11% . (5)

In this model of the sound speed profile, o is a constant, za is the depth at the sound
channel axis, ca is the sound speed at the sound channel axis, and B is a scale depth.

So far, the propagated rays have been modelled as an energy conserving system,
which in reality, is subjected to perturbations from the internal waves in mesoscale
of the ocean. Such perturbations can be described in the first approximation by
adding a range and depth dependent forcing function, F(z, r), to the Hamiltonian
(3) such that

H(z, p, r)= 1
2 p2 +V(z)+F(z, r). (6)
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The effect on the ray dynamics of a single-mode internal wave, described by

F(z, r)=z2A e−3z/2B sin
2pr
R

(7)

will be investigated. Here A is the amplitude, and R is the wavelength of the
internal wave. These two parameters, A and R, comprise a parameter vector for
bifurcation analysis. Substituting equation (6) into equations (1) and (2), the
resultant forms a non-autonomous set of non-linear ordinary differential
equations

dz
dr

= p, (8)

dp
dr

=−
2
B

c2
0cao

1−e−2(z− za )/B

c(z)3 +
3z2
2B

A e−3z/2B sin
2pr
R

. (9)

These equations can be numerically integrated using a fourth order Runge–Kutta
method, however, due to the fact that the system has a strong non-linearity, a
careful monitoring of the integration step length is essential to maintain numerical
accuracy and stability. In particular, for a certain length of integration step, an
artificial parasite damping can occur and mislead the local stability picture.

3. BIFURCATION ANALYSIS

Recent developments in non-linear dynamics and chaos theory have brought a
deeper insight into stability analysis via application of new techniques such as
constructing Poincaré maps, bifurcation diagrams and Lyapunov exponents, to
name a few, which are extensively discussed in references [8, 9, 12, 13]. One of the
most useful techniques from an engineering applications point of view, is
bifurcation analysis as by a means of a control parameter, one may investigate
qualitative changes of the system dynamics. Construction of bifurcation diagrams
differs for autonomous and non-autonomous systems [14]. For a non-autonomous
system, a bifurcation diagram is constructed using Poincaré maps computed for
different values of the branching parameter, which can be explained as follows.
In the phase plane z–p, the mapping of zN:zN+1 is taken at the z-axis ( p=0),
where the flow crosses in the direction of p−:p+ (see Figure 3). The points are
recorded for each varying parameter and assembled as the bifurcation diagrams
z= f(A) or z= f(R).

The parameter vector p used in these investigations is composed of only two
elements, A and R. Using an analogy to a forced oscillator, parameters A and R
correspond to the amplitude and the forcing frequency, respectively. The
amplitude effect is examined in the first instance. Figures 4(a) and (b) show the
bifurcation diagrams z= f(A) for a fixed wavelength, R=1 km, and the initial
conditions z=1 km and f=tan−1 p=7·5°. For the purpose of mathematical
interest, an A range used is beyond the practical limit, say AQ 0·01. The
bifurcation diagram depicted in Figure 4(a) suggests a periodic motion when
plotted on the full scale of z. However, zooming in and plotting in a truncated
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Figure 3. Construction of bifurcation diagram for autonomous system.

z scale as in Figure 4(b), a quasi-periodic motion is revealed. Unlike a dissipative
system which requires excitation to maintain its motion, a Hamiltonian system
preserves its energy. For a given set of the system parameters and initial
conditions, the autonomous system has a unique natural frequency, vn . In
addition, the system is forced with the internal wave, which in general has a
different frequency, v. Therefore, the resonance conditions may occur only for a
finite set of frequency ratios. However, in the present case involving small forcing
amplitude A, the so-called natural mode dominates, and this is evident from the
observation of the phase diagrams. Figures 5(a) and (b) present the wave ray
trajectories in the z−f plane, computed for A=0·03 and two different
propagation distances. Figure 5(a) plots the trajectory for the first 100 km of
propagation, a distance of about two natural wavelengths. A perturbation of small
amplitude and high frequency superimposed onto the natural mode is observed.
The frequency (or wavelength, R) of the forcing, is incommensurate with the
natural frequency, vn , hence, the trajectory does not close. A further continuation
of the trajectory for a propagation distance up to 1000 km reveals a filled band

Figure 4. Bifurcation diagram z= f(A)(R=1 km); (a) full scale, (b) zoom-in.
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Figure 5. Phase planes (A=0·03, R=1 km); (a) r=100 km, (b) r=1000 km.

(Figure 5(b)). These indications are consistent with the characteristics of a
quasi-periodic motion. Quasi-periodicity does not break off or change to a
different type of motion even for much larger amplitudes of forcing (see
Figure 4(b)) and remain the only type of dynamic responses for R=1. It may be
concluded that for an internal wave perturbation of wavelength R=1 km and a
launch angle 7·5°, wave rays remain trapped in the sound channel. This is valid
for perturbation amplitude A even beyond the realistic range. The resultant
modification of the ray trajectory involves only a small harmonic perturbation on
top of the unperturbed natural mode.

The second branching parameter to be investigated is the wavelength, R, and
the bifurcation diagrams z= f(R) can provide even more significant insight into
this dynamical system. The initial conditions and parameters used are z(0)=1 km,
f(0)=7·5°, and A=0·005. The bifurcation diagram shown in Figure 6 was
constructed for the internal wavelength R ranging from 0 to 40 km. It can be noted
that the effect of the perturbation is small up to R=5 km. After that, the system
responses become irregular with increased amplitudes. To investigate this
behaviour, a value of R=8·1 km was selected, i.e., the exact location of a spike
in the bifurcation diagram. Figures 7(a) and (b) plot the phase planes for the
propagation of 400 and 4000 km, respectively. As can be seen the trajectory loop
does not close up even for 4000 km propagation (see Figure 7(b)). The response
again reveals the characteristic of quasi-periodic motion and this is confirmed by
a Poincaré map depicted in Figure 8. A cross-section of the attractor (the
attracting set) is formed by six closed loops.

As R continues to increase, occasions in which the ray diverges and eventually
intersects the ocean surface at z=0 are observed. The first occurrence of this type
is around R=12·5 km, and it becomes much more frequent for Rq 15 km. It is
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Figure 6. Bifurcation diagram z= f(R)(A=0·005).

worth mentioning here, that surface reflection is not modelled in the present work
to simplify the dynamics, however, this can be done by adopting the piecewise
approach [15, 16]. This simplification, however, has a practical justification as the
effectiveness of sound channelling diminished once a wave ray intersects the ocean
surface losing a significant portion of its energy. The simulation hence terminates
whenever that occurs. Two such ray incidences are shown in Figures 9(a) and (b)
for R=17 km and R=18 km, respectively. For the first case (Figure 9(a)) a slow
outward divergence of trajectory is observed, where the surface intersection takes

Figure 7. Phase planes (A=0·005, R=8·1 km); (a) r=400 km, (b) r=4000 km.
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Figure 8. Poincaré map (A=0·005, R=8·1 km).

place around r=6000 km. Although it has no longer physical meaning, the
simulation can continue beyond the intersection by extending into the negative z
range. In that case, it is revealed that the fate of the ray is exponential divergence
toward infinity. This type of instability appears to be always heralded by a diffused
Poincaré map, as shown in Figure 10. There are also cases in which the rate of

Figure 9. Phase planes (A=0·005); (a) R=17 km, (b) R=18 km.
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Figure 10. Poincaré map (A=0·005, R=17 km).

divergence is so rapid that the system looses its stability after a very short
propagation, so the ray intersects the ocean surface after only 300 km (see Figure
9(b)). For Rq 26 km, the system becomes stable again, as can be seen from the
Poincaré map shown in Figure 11, which was constructed for R=30.

Establishing conditions for a long and undisturbed sound propagation is the
primary interest of ocean acoustics. This can be supported by constructing

Figure 11. Poincaré map (A=0·005, R=30 km).
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Figure 12. Maximum ray propagation range before intersection ocean surface; (a)
r= g(R)(A=0·005), (b) r= g(A)(R=10 km).

bifurcation diagrams (e.g., Figure 6), which may be viewed as ‘‘design charts’’
showing the effectiveness of long-range propagation. For that purpose Figure 12
is constructed, where the maximum range r that a sound ray can travel before
intersecting the ocean surface is calculated. The system parameters used are
identical as for Figure 6. Since the simulation is terminated at r=10 000 km, a
dot at that value implies infinite propagation range. By examining Figure 12(a)
closer, it can be noted that the sound ray channelling is largely effective in this
parameter range, except for a finite number of R values. Observations made in the
real ocean suggest that some rays can scatter much more extensively in depth than
predicted for an ocean without fine structure (e.g., internal waves), and in fact,
the energy associated with these scattered rays has been detected at the ocean
bottom, hundreds of meters deeper than expected [17]. It is suspected that ocean
fluctuations (internal waves or internal tides) generate wavelengths that can scatter
rays to the ocean bottom.

To investigate a poor propagation further shown in Figure 12(b), a bifurcation
diagram z= f(A) is constructed for R fixed at 10 km, and it is depicted in Figure
13. At small values of A the diagram suggests a stable unique solution. Zooming
into that region shows four smeared lines, which practically speaking suggests a
period-four motion. For such a behavior, it is worth noting that the excitation
wavelength, R=10 km, is roughly one-quarter of the wavelength of Lo =41·6 km
calculated for the linear unforced system. This behavior continues until
A=0·0046, where a sudden jump of amplitude is observed and the period-four
co-exists with an irregular motion. Soon after that, at around A=0·0070, some
wave rays start to intersect the ocean surface and the simulation is terminated at
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that point. At even larger A values, some wave rays are highly unstable and the
intersection takes place after only a few wavelengths. The maximum propagation
distance is captured in Figure 12(b).

4. STABILITY OF PERIODIC ORBITS

As demonstrated in the preceding section, the system can exhibit stable and
unstable (unbounded) trajectories. The stable ones take the form of periodic (for
the unforced system or when the forcing frequency is locked) or quasi-periodic
motion. Near subharmonic resonance, the trajectory might have a very long
transient, or in other words, the system might exhibit asymptotic instability. This
type of instability, which has not been reported in any earlier work for this ray
system, will be investigated via Floquet theory.

The loss of stability of a periodic orbit can be examined by Floquet theory, and
for this purpose equations (8) and (9) are rewritten into more general form

x'= f(x, p, r), (10)

where x=[z, p]T represents the two-dimensional phase space, p=[A, R]T is the
parameter space, and the prime marks the differentiation with respect to r. If the
system has a periodic orbit G, its local stability in a small vicinity of the orbit can
be assessed through linearised perturbed equations, which can be written as
follows

x̃'= J(r)x̃, (11)

Figure 13. Bifurcation diagram z= f(A)(R=10 km).
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where x̃ is perturbation around the periodic trajectory, and J is the Jacobi matrix
evaluated at xe (r)$G,

J(r)=
1f
1xbxe(r)

. (12)

Due to the periodicity of the trajectory G, the Jacobian J(r) is a matrix with
periodic elements. The solution of the perturbed linearised equation (11) can be
written as a combination of independent linear solutions x̃i (r),

x̃(r)= s
2

i=1

ci x̃i (r). (13)

This can be used to form a fundamental solution system, which may be expressed
in a matrix form as follows

x̃(r)=F(r)C, (14)

where F(r) is an n× n (n=2) matrix composed of the n linearly independent
fundamental solution vectors, and C is an n× n matrix known as the monodromy
matrix. For the system of fundamental solutions, the initial conditions have been
chosen as a unit hypersphere, i.e.,

F(0)= I, (15)

where I is the identity matrix. The monodromy matrix plays a crucial role as its
eigenvalues l, so-called Floquet multipliers, provide the necessary information
concerning the stability of the periodic solution xe (r). Substituting the
fundamental solution into equation (14), with the initial distance r=0, and
assuming periodicity of wavelength, L, it can be shown

F(L)=C, (16)

which can be utilized to calculate the monodromy matrix by integration of the
system (11) applying the initial conditions as in equation (15).

To construct the monodromy matrix C, the perturbed system (11) with the two
sets of initial conditions, (z̃0, p̃0)= (1, 0) and (0, 1), as defined in equation (15), is
numerically integrated side-by-side with the non-autonomous system, (8) and (9),
with its original initial conditions. The original system is used in the capacity of
numerically identifying the period (wavelength) L, thus terminating the
integration. The final solution vectors x̃(L) are assembled to form the monodromy
matrix. Their eigenvalues l are the Floquet multipliers. An absolute value =l=q 1
for any of the eigenvalues indicates an unstable orbit.

It should be mentioned here the above outlined procedure can be used in a
rigorous manner only for a pure periodic orbit. As observed in the preceding
section, some of the system responses are quasi-periodic, where their orbits never
close up. Some difficulty is expected in the interpretation of maximum Floquet
multipliers for such cases. Nevertheless, since the perturbation introduced by the
forcing is small, it is possible to identify an approximate period when the trajectory
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Figure 14. Floquet multiplier diagram (A=0·005).

returns to a close vicinity of, but not the same, starting position. With such a
pragmatic approach, the calculated maximum Floquet multiplier will be a good
indicator of the system stability. The computation of the Floquet multipliers is
achieved by integration of merely one cycle. However, due to the quasi-periodicity
complication, it is suspected that the analysis based only on the Floquet multipliers
may lead to inaccurate results for the cases when the system is stable, especially
in the range of small internal wavelength, R. This is illustrated by an example
below.

The Floquet analysis is applied to the same case, as illustrated in Figure 6. The
result of the analysis is shown as =l= versus R in Figure 14. At larger values of R
the following observation was made. In the predicted stable region, two complex
conjugate eigenvalues of absolute values exactly equal to 1 were found. Otherwise,
two real eigenvalues exist, where the larger is always greater than 1 and this marks
the unstable region. Based on this criterion, it was predicted that the unstable
region should lie between 13 kmQRQ 16 km, and 20 kmQRQ 28 km. A close
look at Figure 6 does confirm bursts of instabilities around these regions. For
RQ 10 km, the Floquet multiplier becomes noisy, which indicates instability,
however, this is not born out by a long term simulation, as in Figure 6.

Considering quasi-periodicity as another form of stability, it is believed an
appropriate procedure can be devised for calculating Floquet multipliers. One
possibility is to extend the traditional definition of Floquet multiplier to consider
its transient values at multiple cycles of quasi-periodic trajectory. A preliminary
analysis and numerical experiment shows that the Floquet multiplier averaged
over the quasi-periodic cycles can cure much of this anomaly. As there is no
precedence of such an analysis, a more rigorous and complete study is needed
before jumping to the conclusion. However, this part is left for a future
investigation.
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5. CONCLUDING REMARKS

The dynamics of sound rays lend insight into the behavior of acoustic
propagation in the ocean wave guide. With the forcing from an internal wave, is
superimposed on the Munk’s canonical sound speed profile, an otherwise simple
harmonic ray trajectory can become a complex one. Utilizing various non-linear
dynamics tools, such as the construction of bifurcation diagrams, phase planes and
Poincaré maps, and the computing of Floquet multipliers, the dynamics of the ray
system can be better understood.

To achieve an early detection of instability of these nearly periodic
(quasi-periodic) motions, Floquet analysis is applied. A straightforward
application, however, leads to inconclusive results. At larger forcing wavelength,
the Floquet multiplier seems to be a good indicator of instability. At small forcing
wavelength, the interpretation is not straightforward. Although some clues appear
obtainable from the study of quasi-periodic motions via Floquet theory, which
suggests an extension of the definition of Floquet multiplier by averaging it in time,
this area requires further research.

Bifurcation diagrams (such as Figures 6 and 13) demonstrate the various
regimes of sound ray behavior. Charts such as Figure 12 showing the maximum
propagation distance, also display additional useful information, i.e., the fractal
appearance in some regions might explain the observed sporadic ray scattering
into greater depths under otherwise normal propagation conditions. Generally
speaking, these and other innovative diagrams may be used as ‘‘design charts’’ for
predicting the behavior of ocean sound propagation under various environmental
and operational conditions or for non-linear dynamic control purposes (e.g.,
[18, 19]).

A later refinement might include multi-mode internal wave perturbations and
ray reflection from a rough ocean surface and bottom but is not considered
presently so as not to confuse the fundamental non-linear dynamic issues discussed
herein. For long-range propagation, ignoring rays that reflect from the ocean
surface or bottom is justified anyway, since these rays are severely attenuated over
long ranges.
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